In two separate research studies, Ma’s group offers solutions to long-standing challenges in X-ray imaging. In the first study, published in Small, the team developed a new material that generates electric signals when exposed to X-rays, enabling direct X-ray detection. In the second study, published in Angewandte Chemie, the researchers used a related material to produce low-cost scintillators, which are materials that emit visible light when exposed to X-rays or other high-energy radiation.
“We have traditionally relied on inorganic materials for X-ray detection, but they are often rigid, expensive to manufacture and energy-intensive to produce, and they have many limitations,” Ma said. “What we have been trying to develop is a new class of materials that can address the issues and challenges faced by existing materials.”
In these studies, researchers created new hybrid materials composed of both organic and inorganic components, known as organic metal halide complexes (OMHCs) and organic metal halide hybrids (OMHHs). By tailoring the structures of these materials at the molecular level, the team enabled different forms of X-ray detection. This research represents a major step toward developing lower-cost, scalable and flexible X-ray detector technologies capable of overcoming key limitations of conventional inorganic systems.
Glassy OMHC films for direct X-ray detectors
Commercially available direct X-ray detectors are constructed using inorganic semiconductors, made from non-carbon materials, such as cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe). These materials contain toxic elements and require energy-intensive processing, making them expensive.
In the first study, the team demonstrated, for the first time, the use of OMHCs as a material for making direct X-ray detectors. These are materials composed of carbon-based semiconducting molecules that are bonded to metal halides, which are compounds made of metal and a halogen element. The specific OMHC compound developed by the team was created out of zinc, bromine, and a carbon-based molecule, enabling efficient X-ray absorption and electron transport within a single material.
Using a melt-processing approach, similar to melting plastics and allowing them to cool into a desired shape, the researchers transformed OMHC molecular crystals into amorphous, glass-like materials that can be molded into ready-to-use forms. They used these materials to make direct X-ray detectors that convert incoming X-rays into electrical signals.
Results
The resulting detectors produced strong electrical responses even at low X-ray exposure levels, making them more effective than detectors made from traditional materials. The team also evaluated the long-term stability of detectors made with the new material. After storing the detectors for four months under ambient conditions, testing showed they retained 98% of their initial performance.
OMHCs offer additional practical advantages. They are less expensive to produce than materials currently used in commercially available X-ray detectors because they can be synthesized from abundant and non-toxic raw materials. Moreover, the simple melt-processing method also makes device fabrication easier and more scalable than existing approaches.
“This is actually the first time these OMHC materials have been used to fabricate direct X-ray detectors,” said Ma. “They can be prepared in a low-cost way while delivering high performance. From a sustainability perspective, this new class of materials offer tremendous advantages over conventional materials.”